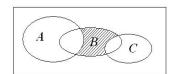

2006--2007 学年度上学期期中阶段测试


数学试券 高

考试时间:120 分钟 试题满分:150 分

- 一、选择题: 本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个 选项中,只有一项是符合题目要求的.
- 1. 如图, 阴影部分表示的集合是
 - (A) $B \cap [C_n(A \cup C)]$ (B) $B \cap (A \cup C)$

(C) $(C_{II}B) \cap (A \cup C)$ (D) $(A \cup B) \cup [C_{II}(B \cup C)]$

- 2. 下列命题中,正确命题的个数是:

 - ①若 $A \cap B = A$,则 $A \subset B$; ②若 $A \cup B = A$,则 $A \subset B$;
 - ③若 $A \cup B = U$,则 $A = C_U B$; ④若 $A \cap B = \phi$,则 $A = C_U B$;

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 3. 已知集合 $M = \{(x,y) | x+y=2\}, N = \{(x,y) | x-y=4\}, 则 M \cap N =$

- (A) $\{(3,-1)\}\$ (B) $\{3,-1\}\$ (C) $\{3,-1\}\$ (D) $\{x=3,y=-1\}\$
- 4. 设集合 $A = \{x \mid -1 \le x < 2\}$, $B = \{x \mid x < a\}$, 若 $A \cap B \ne \emptyset$, 则 a 的取值范围是

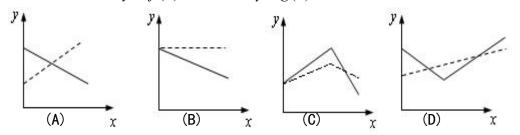
- (A) a < 2 (B) a > -2 (C) a > -1 (D) $-1 < a \le 2$
- 5. 已知两个函数 f(x) 和 g(x) 的定义域和值域都是集合 $\{1,2,3\}$,其定义如下表:

x	1	2	3
f(x)	2	3	1

x	1	2	3
g(x)	1	3	2

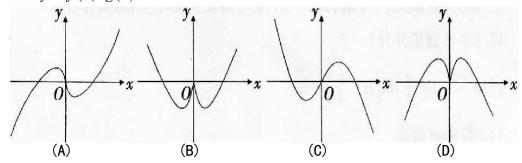
填写下列 g[f(x)] 的表格, 其三个数

依次为


- (A) 3, 1, 2; (B) 2, 3, 1;
- (C) 1, 2, 3;
- (D) 3, 2, 1.

х	1	2	3
g[f(x)]			

6.	若不寺式 $ x-a $	<6的解集为(-2	(10),则头数 a 寺	于	
7.	(A) 8 下面关于函数的	(B) 4 5零点的叙述中正		(D) -8	
	①函数 $y = f(x)$	在实数α处的值	等于零, 即 $f(\alpha)$:	$=0$,则 α 叫做这个函数的	
零	点;				
	②当 $\Delta = b^2 - 4aa$	c=0时,二次函数	$x y = ax^2 + bx + c$	有一个二重的零点(二阶零	
点)	;				
	③函数 $y = f(x)$	在一个区间[a,b]	上的图象不间断	,并且在它的两个端点处	
的证	函数值异号,即 f	(a)f(b) < 0,则这	个函数在这个区	间上,至少有一个变号零	
点;					
	④函数 $y = f(x)$	在一个区间[a,b]	上的图象不间断	,并且在它的两个端点处	
的函数值同号,即 $f(a)f(b)>0$,则这个函数在这个区间上,不可能有变号零点.					
	(A) 1	(B) 2	(C) 3	(D) 4	
8.	已知函数 $y = e^x$	的图象与函数 y =	= f(x) 的图象关	于直线 $y = x$ 对称, 则	
	$(A) f(2x) = e^{2x}$	$(x \in R)$	(B) $f(2x) = \ln x$	$2 \cdot \ln x (x > 0)$	
	(c) $f(2x) = 2e^x$	$(x \in R)$	(D) $f(2x) = \ln($	2x) (x > 0)	
9.	不等式 $x^2 - ax$ -	-b<0的解集是	$\{x \mid 2 < x < 3\}$, 则	不等式 $bx^2 + ax - 1 > 0$ 的解	
	集是				
	(A) $\{x \mid \frac{1}{3} < x < 1\}$	$\{\frac{1}{2}\}$	(B) $\{x \mid x < \frac{1}{3}$ 或	$x > \frac{1}{2}$	
	(c) $\{x \mid -\frac{1}{2} < x < x < x < x < x < x < x < x < x < $	$<-\frac{1}{3}$	(D) $\{x \mid x < -\frac{1}{2}\bar{B}\}$	$ \vec{\lambda}x > -\frac{1}{3}\}$	
10.	函数 $f(x) = \frac{x^2 - x^2}{x^2 - x^2}$	$\frac{-2x-1}{x^2}$ 的值域是			
	(A) $\{y \mid y \le \frac{1}{2}\}$	(B) $\{y \mid y \le 2\}$	(c) $\{y \mid 0 \le y \le \frac{3}{2}\}$	(D) $\{y \mid y \ge 0\}$	


数学试卷 第 2 页 共 6 页

11. 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线 y = f(x),另一种是平均价格曲线 y = g(x) (如 f(2) = 3 是指开始买卖后二个小时的即时价格为 3 元; g(2) = 3 表示二个小时内的平均价格为 3 元). 下图给出的四个图象中,实线表示 y = f(x), 虚线表示 y = g(x), 其中可能正确的是

12. 已知函数 f(x) = x, g(x) 是定义在 R 上的偶函数, 当 x > 0 时 $g(x) = \lg x$, 则

函数 $y = f(x) \cdot g(x)$ 的大致图象为

- 二、填空题: 本大题共 4 小题,每小题 4 分,共 16 分.
- 13. 若集合 $A = \{a_1, a_2, a_3, a_4\}$, 集合 $B = \{b_1, b_2, b_3, b_4, b_5, b_6\}$, 则由 A 到 B 的映射有个. (以数字作答, 不要写作幂的形式)
- 14. 我校举办"希望之星"学科竞赛. 某班有 31 名同学参加数学竞赛, 24 名同学参加物理竞赛, 24 名同学参加化学竞赛; 其中参加数、理、化三科竞赛的有7名同学, 只参加数学、物理两科竞赛的有5名同学, 只参加物理、化学两科的有3名同学, 只参加数学、化学两科的有4名. 若该班共有55名同学,则数学、物理、化学竞赛都没有参加的同学有名.

15. 一个机器人每一秒钟前进一步或后退一步. 程序设计师设计的程序是让机器人以"先前进3步, 然后再后退2步"的规律移动. 如果将机器人放在数轴的原点, 面向正方向在数轴上移动(1步的距离为1个单位长度). 令 P(n)

表示第n秒时机器人所在位置的坐标,且记P(0) = 0,则P(1) = 1,P(2) = 2,

① P(6) = 2;

- 2P(7) = 3;
- $\Im P(2005) < P(2006)$;
- (4) P(2006) > P(2007).
- 16. 下列命题中, 正确的是______. (要求填写所有正确答案序号)

①函数 $y = \frac{\sqrt{1-x^2}}{3-|3-x|}$ 是奇函数;

- ②函数 $y = \begin{cases} -x-1 & (x \le -1) \\ -x^2+1 & (-1 < x < 1)$ 是奇函数; $x-1 & (x \ge 1) \end{cases}$
- ③函数 $y = \frac{1}{r-1} + \frac{1}{r+1}$ 是奇函数;
- ④函数 $y=x^{\frac{2}{3}}$ 是偶函数.

三、解答题: 本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.

17. (本小题满分 12 分) 解下列不等式:

$$(1) 4^x - 2^{x+1} - 8 < 0$$
;

(II)
$$\log_2 x + 2 < \log_2 (x^2 - 3x)$$
.

18. (本小题满分 12 分)

已知集合 $A = \{a^2, a+1\}$,集合 $B = \{b, 2b+1\}$,且 $\{1\} \supseteq A \cap B$,求实数 $a \cap a \cap B$,并指出实数 $a \cap a \cap B$

19. (本小题满分 12 分)

函数
$$f(x) = e^x + \frac{a}{e^x} (x \in R)$$
, 其中 $a \in R$.

- (II) 当 $a \le 1$ 时, 证明: 函数 f(x) 在区间 $[0,+\infty)$ 上是单调增函数.

20. (本小题满分12分)

某水果公司销售某种水果,零售价为每千克4元.该公司为鼓励顾客多购买,对购买量超过100千克的顾客实行"批发价"优惠,具体优惠办法是:购买量在100千克至1000千克的,超过100千克的部分实行9折优惠;购买量在1000千克至5000千克的,超过1000千克的部分实行8折优惠;购买量超过5000千克,超过5000千克的部分实行7折优惠.

设购买量为x千克时,所需要的金额为f(x)元.

- (Π)求f(x);
- (Ⅲ)8000元能购买多少公斤这种水果?

21. (本小题满分 13 分)

已知函数 $f(x) = x^2 + 2x + 3$ ($x \in [t, t+1]$, 其中 $t \in R$). 设 g(t) 为 f(x) 的最大值,设 h(t) 为 f(x) 的最小值.

- (1)求函数 g(t)和 h(t);
- (II)指出函数 h(t) 图象的对称轴,并指出函数 h(t) 的单调区间及相应的单调性.(注:问题(II)只需写出结论,不必书写求解证明过程)

22. (本小题满分 13 分)

已知函数 y = f(x) 是对数函数.

- (1) 若函数 y = f(x) 的图象经过点(64,3), 求函数 f(x);
- (川) 记 $g(x) = f(x) \cdot [f(x) + f(2) 1]$. 若 y = g(x) 在区间 $[\frac{1}{2}, 2]$ 上是增函数,求实数 a 的取值范围.