题型练 2 选择、填空综合练(二)

能力突破训练

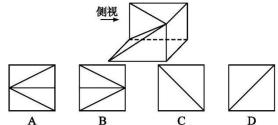
1 .设集合 $A=\{x 1≤x≤5\}$, Z 为整数集,则集合 $A\cap Z$ 中元素的个数是()

A.6 B.5 C.4 D.3

2.复数=()

A.i B.1+i C.-i D.1-i

3.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为(



4.(2017 天津河西区高三质量调查)若存在实数 x,使|x-a|+|x-1|≤3 成立,则实数 a 的取值范围是 ()

- A.[-2,1] B.[-2,2] C.[-2,3] D.[-2,4]
- **5**.已知 $p: \forall x \in [-1,2], 4^x-2^{x+1}+2-a<0$ 恒成立,q:函数 $y=(a-2)^x$ 是增函数,则 p 是 q 的()
- A.充分不必要条件
- B.必要不充分条件
- C.充要条件
- D.既不充分也不必要条件
- 6.下列四个命题中真命题的个数是()
- ①'x=1"是" $x^2-3x+2=0$ "的充分不必要条件
- ②命题" $\forall x \in \mathbf{R}$, $\sin x \le 1$ "的否定是" $\exists x_0 \in \mathbf{R}$, $\sin x_0 > 1$ "
- ③"若 am2<bm2,则 a<b"的逆命题为真命题
- ④命题 $p: \forall x \in [1, +\infty)$, $\lg x \ge 0$, 命题 $q: \exists x_0 \in \mathbb{R}, +x_0+1 < 0$, 则 $p \lor q$ 为真命题

A.0 B.

C.2 D.3

7.已知实数 x,y 满足约束条件则 z=2x+4y 的最大值是()

A.2 B.0 C.-10 D.-1:

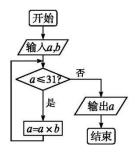
8.已知 A,B 是球 O 的球面上两点, $\angle AOB=90^\circ$, C 为该球面上的动点. 若三棱锥 O-ABC 体积的最大值为 36,则球 O 的表面积为()

A.36π B.64π C.144π D.256π

9.(2017 江苏,10)某公司一年购买某种货物 600 吨,每次购买 x 吨,运费为 6 万元/次,一年的总存储费用为 4x 万元.要使一年的总运费与总存储费用之和最小,则 x 的值是_____.

10.(2017 全国 I,文 14)曲线 $y=x^2+$ 在点(1,2)处的切线方程为_____

11.执行如图所示的程序框图,若输入 a=1,b=2,则输出的 a 的值为



12.已知直线 y=mx 与函数 f(x)=的图象恰好有三个不同的公共点,则实数 m 的取值范围是

13.已知等差数列 $\{a_n\}$ 的通项是 $a_n=1-2n$,前n项和为 S_n ,则数列的前11项和为_____

14.已知 P 为椭圆=1 上的一点,M,N 分别为圆(x+3)²+y²=1 和圆(x-3)²+y²=4 上的点,则 |PM|+|PN|的最小值为______.

思维提升训练

1.设集合 $A = \{x | x + 2 > 0\}, B = , 则 A \cap B = ($)

- A. $\{x|x>-2\}$
- B. $\{x | x < 3\}$
- C. $\{x | x < -2$ 或 $x > 3\}$
- D. $\{x \mid -2 \le x \le 3\}$
- **2**.复数 z=(i) 为虚数单位)的虚部为()
- A.2
- B.-2
- C.1
- D.-1

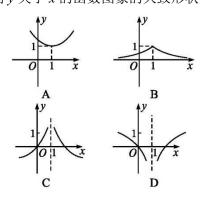
3.定义域为 **R** 的四个函数 $y=x^2+1, y=3^x, y=|x+1|, y=2\cos x$ 中,偶函数的个数是()

- A 4
- B.3
- C.2
- D.1

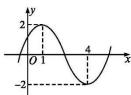
4.已知 x,y 满足约束条件则 z=-2x+y 的最大值是(

- A.-1
- B.-2
- C.-5
- D.1

5.若实数 x,y 满足|x-1|- $\ln=0$,则 y 关于 x 的函数图象的大致形状是(



6.已知简谐运动 $f(x)=A\sin(\omega x+\varphi)$ 的部分图象如图所示,则该简谐运动的最小正周期 T 和初相 φ 分别为()



- A. $T=6\pi, \varphi=$
- B. $T=6\pi, \varphi=$

C. $T = 6, \varphi =$

D. $T = 6, \varphi =$

7.设 \mathbf{a} , \mathbf{b} 是两个非零向量,则使 \mathbf{a} · \mathbf{b} =| \mathbf{a} |·| \mathbf{b} |成立的一个必要不充分条件是()

A.a=b

 $B.a \perp b$

 $C.\mathbf{a} = \lambda \mathbf{b}(\lambda > 0)$

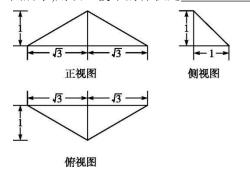
D.a // b

8.在 $\triangle ABC$ 中,AC=,BC=2,B=60°,则 BC 边上的高等于(

A. B.

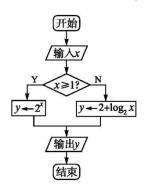
C. D.

9.已知某三棱锥的三视图如图所示,则该三棱锥的体积是_



10.(2017 全国III,文 14)双曲线=1(a>0)的一条渐近线方程为y=x,则 a= $_$

11.(2017 江苏,4)下图是一个算法流程图.若输入x的值为,则输出y的值是____



12.已知平面向量 \mathbf{a} , \mathbf{b} , $|\mathbf{a}|$ =1, $|\mathbf{b}|$ =2, \mathbf{a} · \mathbf{b} =1.若 \mathbf{e} 为平面单位向量,则 $|\mathbf{a}$ · $\mathbf{e}|$ + $|\mathbf{b}$ · $\mathbf{e}|$ 的最大值

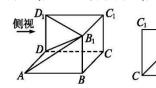
13.已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上, $\triangle ABC$ 是边长为 1 的正三角形,SC 为球 O 的直径,且 SC=2,则此棱锥的体积为______.

14.设 $\{a_n\}$ 是集合 $\{2^s+2^t|0\leq s< t$,且 $s,t\in \mathbb{Z}\}$ 中所有的数从小到大排列成的数列,即 $a_1=3,a_2=5,a_3=6,a_4=9,a_5=10,a_6=12,\cdots$,将数列 $\{a_n\}$ 各项按照上小下大、左小右大的原则写成如下的三角形数表:

题型练2 选择、填空综合练(二)

能力突破训练

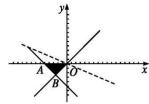
- **1.B** 由题意,A∩**Z**={1,2,3,4,5},故其中的元素个数为 5,选 B.
- 2.A 解析 =i,故选 A.
- **3.D 解析** 如图,点 D_1 的投影为 C_1 ,点 D 的投影为 C,点 A 的投影为 B,故选 D.



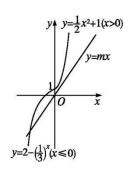
4.D

7.

- **5.A** 解析 关于 p:不等式化为 2^{2x} - $2\cdot 2^x$ +2-a<0,令 t= 2^x , x \in [-1,2], t \in ,则不等式转化为 t^2 -2t+2-a<0,即 a> t^2 -2t+2 对任意 t \in 恒成立.令 y= t^2 -2t+2=(t- $1)^2$ +1,当 t0 时,ymax=10,所以 a>10. 关于 q:只需 a-2>1,即 a>3.故 p $\neq q$ 的充分不必要条件.
- **6.D** 解析 由 x=1,得 $x^2-3x+2=0$,反之,若 $x^2-3x+2=0$,则 x=1 或 x=2,①是真命题;全称命题的否定是特称命题,②是真命题;原命题的逆命题为"若 a < b,则 $am^2 < bm^2$ ",当 m=0 时,结论不成立,③是假命题;命题 p 是真命题,命题 q 是假命题,④是真命题,故选 D.



- B 解析 实数 x,y 满足约束条件对应的平面区域为如图 ABO 对应的三角形区域,当动直线 z=2x+4y 经过原点时,目标函数取得最大值为 z=0,所以选 B.
- 8.C 解析 $\triangle AOB$ 面积确定,若三棱锥 O-ABC 的底面 OAB 的高最大,则其体积才最大.因为高最大为半径 R,所以 V_{O - $ABC}$ = $R^2 \times R$ =36,解得 R=6,故 S_{**} =4 πR^2 =144 π .
- **9.30 解析** 一年的总运费与总存储费用之和为 $4x+\times 6=4 \ge 4\times 2=240$,当且仅当 x=,即 x=30 时等号成立.
- **10**.y=x+1 解析 设 y=f(x),则 f'(x)=2x-,所以 f'(1)=2-1=1. 所以曲线 $y=x^2+$ 在点(1,2)处的切线方程为 $y-2=1\times(x-1)$,即 y=x+1.
- **11.**32 **解析** 第一次循环,输入 a=1,b=2,判断 $a \le 31$,则 $a=1 \times 2=2$;
 - 第二次循环,a=2,b=2,判断 $a \le 31$,则 $a=2 \times 2=4$;
 - 第三次循环,a=4,b=2,判断 $a \le 31$,则 $a=4 \times 2=8$;
 - 第四次循环,a=8,b=2,判断 $a \le 31$,则 $a=8 \times 2=16$;
 - 第四次循环,a=16,b=2,判断 $a \le 31$,则 $a=16 \times 2=32$;
 - 第五次循环,a=32,b=2,不满足 $a \leq 31$,输出 a=32.
- **12**.(,+∞) **解析** 作出函数 f(x)=的图象,如图.

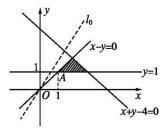


直线 y=mx 的图象是绕坐标原点旋转的动直线. 当斜率 $m \le 0$ 时,直线 y=mx 与函数 f(x)的图象只有一个公共点;当 m>0 时,直线 y=mx 始终与函数 y=2-($x \le 0$)的图象有一个公共点,故要使直线 y=mx 与函数 f(x)的图象有三个公共点,必须使直线 y=mx 与函数 $y=x^2+1(x>0)$ 的图象有两个公共点,即方程 $mx=x^2+1$ 在 x>0 时有两个不相等的实数根,即方程 $x^2-2mx+2=0$ 的判别式 $\Delta=4m^2-4\times2>0$,解得 m>. 故所求实数 m 的取值范围是(x=x=x=0).

- **13.-66 解析** 因为 $a_n=1-2n$, $S_n==-n^2$, =-n, 所以数列的前 11 项和为=-66.
- **14.7 解析** 由题意知椭圆的两个焦点 F_1,F_2 分别是两圆的圆心,且 $|PF_1|+|PF_2|=10$,从而 |PM|+|PN|的最小值为 $|PF_1|+|PF_2|-1-2=7$.

思维提升训练

- 1.D 解析 由已知,得 $A = \{x \mid x > -2\}, B = \{x \mid x < 3\}, 则 A \cap B = \{x \mid -2 < x < 3\},$ 故选 D.
- **2.B** 解析 z==1-2i,得复数 z 的虚部为-2,故选 B.
- **3.**C **解析** 由函数奇偶性的定义,得 $y=x^2+1$ 与 $y=2\cos x$ 是偶函数, $y=3^x$ 与 y=|x+1|既不是奇函数也不是偶函数,故选 C.
- **4.A** 解析 作出约束条件的可行域如图阴影部分所示,平移直线 $l_0:y=2x$,可得在点 A(1,1)处 z 取得最大值,最大值为-1.



- 5.B 解析 已知等式可化为y=根据指数函数的图象可知选项B正确,故选B.
- **6**.C 解析 由图象易知 *A*=2,*T*=6, ∴ω=.

又图象过点(1,2),∴sin=1,

 $\therefore \varphi + = 2k\pi + k \in \mathbb{Z},$

 $\mathbb{Z}|\varphi|<, ::\varphi=.$

- 7.D 解析 因为 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cos \theta$,其中 θ 为 \mathbf{a} 与 \mathbf{b} 的夹角.若 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}|$,则 $\cos \theta = 1$,向量 \mathbf{a} 与 \mathbf{b} 方向相同;若 \mathbf{a} / \mathbf{b} ,则 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}|$ 或 $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}| \cdot |\mathbf{b}|$,故选 D.
- **8.**B **解析** 设 *AB=a*,则由 *AC²=AB²+BC²-2AB·BCcos B* 知 7=*a*²+4-2*a*,即 *a*²-2*a*-3=0, ∴ *a*=3(负值 含去).

∴BC 边上的高为 AB·sin B=3×.

- 9. 解析 由三视图可知该几何体是一个三棱锥,且底面积为 $S=\times2\times1=$,高为 1,所以该几何体的体积为 $V=Sh=\times1=$.
- **10.5** 解析 由双曲线的标准方程可得其渐近线方程为 $y=\pm x$. 由题意得,解得 a=5.
- 11.-2 解析 由题意得 y=2+log₂=2-4=-2,答案为-2.
- **12**. **解析** 由已知得 $\mathbf{a} = \mathbf{b}$ 的夹角为 $\mathbf{60}^{\circ}$,不妨取 $\mathbf{a} = (1,0), \mathbf{b} = (1,)$.

设 $e = (\cos \alpha, \sin \alpha)$,

则 $|\mathbf{a} \cdot \mathbf{e}| + |\mathbf{b} \cdot \mathbf{e}| = |\cos \alpha| + |\cos \alpha + \sin \alpha|$

 $\leq |\cos \alpha| + |\cos \alpha| + |\sin \alpha|$

 $=2|\cos\alpha|+|\sin\alpha|,$

取等号时 $\cos \alpha$ 与 $\sin \alpha$ 同号.

所以 $2|\cos \alpha| + |\sin \alpha| = |2\cos \alpha + \sin \alpha| = |\sin(\alpha + \theta)|$.

显然 $|\sin(\alpha+\theta)|$ ≤.

易知当 α + θ =时, $|\sin(\alpha+\theta)|$ 取最大值 1,此时 α 为锐角, $\sin\alpha$, $\cos\alpha$ 同为正,因此上述不等式中等号能同时取到.故所求最大值为.

- 13. 解析 : SC 是球 O 的直径, $\therefore \angle CAS = \angle CBS = 90^\circ$. : BA = BC = AC = 1, SC = 2, $\therefore AS = BS = .$ 取 AB 的中点 D, 显然 $AB \perp CD$, $AB \perp SD$,
- \therefore AB \bot 平面 SCD. 在 \triangle CDS 中,CD=,DS=,SC=2,利用 余 弦定理可得 $\cos \angle$ CDS==-,故 $\sin \angle$ CDS=,
 - $S_{\triangle CDS}=$,
 - $\therefore V = V_{B-CDS} + V_{A-CDS} = \times S_{\triangle CDS} \times BD + S_{\triangle CDS} \times AD = S_{\triangle CDS} \times BA = \times 1 = .$
- **14**.16 512 解析 用(s,t)表示 2^s+2^t,则三角形数表可表示为

第一行 3(0,1)

第二行 5(0,2) 6(1,2)

第三行 9(0,3) 10(1,3) 12(2,3)

第四行 17(0,4) 18(1,4) 20(2,4) 24(3,4)

第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)

...

因为 99=(1+2+3+4+…+13)+8,

所以 a_{99} =(7,14)= 2^7 + 2^{14} =16 512.