2013-2014 学年度 上学期期末考试

高二年级 文科数学试券

一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中, 只有一个是符合题目要求的)

1. 条件
$$p: x^2 + x > 0$$
 是条件 $q: \frac{1}{2^x} < 1$ 成立的 () 条件

A.充分不必要

B. 必要不充分 C. 充要 D. 既不充分也不必要

2. 数列 $\{a_n\}$ 的前 n 项和 $S_n = n^2 - 1$,则 $a_5 = ($

B. 15

3. 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率是 $\sqrt{10}$,则它的渐近线方程是(

A. $y = \pm 3x$ B. $y = \pm \frac{1}{3}x$ C. $y = \pm \sqrt{10}x$ D. $y = \pm \frac{\sqrt{10}}{10}x$

4. 对于正实数a、b,下列结论正确的是(

A. $a^2 + b^2 > 2ab$

B. $\frac{2ab}{a+b} \ge \sqrt{\frac{a^2+b^2}{2}}$

C. $a^3 + b^3 > ab^2 + ba^2$

D. $\frac{1}{a+1} + \frac{1}{b+1} > \frac{2}{a+b+1}$

5. 在等差数列 $\{a_n\}$ 中, $a_2 = 7$, $a_5 = 16$,则 a_{33} 等于(

A. 97

B. 100

C. 104

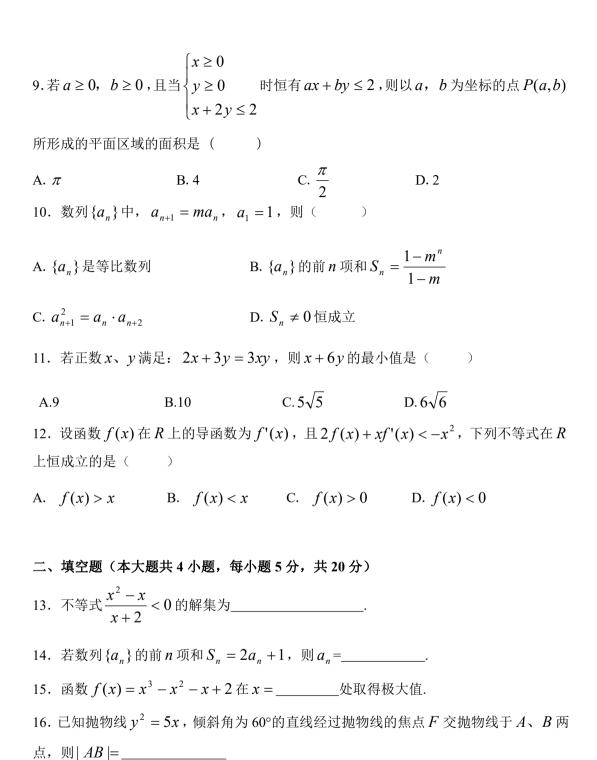
6. 椭圆 $\frac{x^2}{16} + \frac{y^2}{8} = 1$ 上一动点 M 与椭圆两焦点能构成的直角三角形的个数是(

B. 4

7. 函数 $y = x + \frac{5}{x+1}$ $(x \ge 2)$ 取得最小值时的 x 的值为 ()

A. $\sqrt{5} - 1$ B. 2

C. $\sqrt{5}$ D. $\sqrt{5} + 1$


8. 曲线 $y = x^3 + 3$ 在点(1, 4)处的切线在 y 轴上的截距是(

A. 1

B. 2

C. 3

D. 4

三、解答题(本大题共 6 小题,满分 70 分.解答须写出文字说明、证明过程和演算步骤) 17. (本小题满分 10 分)

设x = 1和x = 2是函数 $f(x) = ax^3 + bx^2 + 6x + 1$ 的两个极值点.

- (1) 求*a*、*b*的值:
- (2) 求 f(x) 的单调区间.

18. (本小题满分 12 分)

在等比数列 $\{a_n\}$ 中,设其前n项和、前2n项和、前3n项和分别是A、B、C,试比较 A^2+B^2 与A(B+C)的大小,并证明之.

19. (本小题满分 12 分)

抛物线 $C: x^2 = 2py$,在 x = 2 处的切线与直线 l: 2x - y + 2 = 0 平行.

- (1) 求抛物线的方程;
- (2) 直线 l 与抛物线交于 $A \times B$ 两点,O 为坐标原点,求 $\angle AOB$ 的大小.

20. (本小题满分 12 分)

数列 $\{a_n\}$ 的前 n 项和记为 S_n ,已知 $a_1=3$, $a_{n+1}=\frac{2n+3}{n}S_n$, $n\in N^+$.

- (1) 求 a_2 、 a_3 ;
- (2) 求证: $\{\frac{S_n}{n}\}$ 是等比数列,并求出 S_n .

21. (本小题满分 12 分)

对定义域分别是 $F \setminus G$ 的函数 $y = f(x) \setminus y = g(x)$,

规定: 函数
$$h(x) = \begin{cases} f(x) + g(x), & \exists x \in F \exists x \in G, \\ f(x), & \exists x \in F \exists x \notin G, \\ g(x), & \exists x \notin F \exists x \in G. \end{cases}$$

已知函数 $f(x) = x^2$, $g(x) = a \ln x (a \in \mathbf{R})$.

- (1) 求函数h(x)的解析式;
- (2) 对于实数a,函数h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.

22. (本小题满分 12 分)

已知椭圆与双曲线 $\frac{4y^2}{3} - 4x^2 = 1$ 有公共的焦点,且椭圆过点 $P(\frac{3}{2},1)$.

- (1) 求椭圆方程;
- (2)直线l过点M(0,1)交椭圆于A、B两点,A在y轴左侧,且 $3\overline{AM}=7\overline{MB}$,求直线l的斜率.