2012—2013 学年度上学期期末考试

高二年级文科 数学试卷

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)

1.	集合 $M = \{x \mid x^2 - 2x - 3 < 0\}$,	集合 N = {	$\{x \mid \mid x \mid \geq 2\}$, \emptyset M	$I \cap N = ($	ı
	A. $\{x \mid x \le -2$ 或 $x \ge 2\}$	$3. \{x \mid x \leq -1\}$	-2 或 $x > 3$ }		
	C. $\{x \mid 2 \le x < 3\}$	$0. \{x \mid x \le -1\}$	2或 $-1 < x < 3$ }		
2.	椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 上一点 M 到一	个焦点的距隔	离为 4,则 <i>M</i> 到另 [.]	一个焦点的距离为	, ,
	A.4 B. 6 C. 8		D. 2		
3.	"∃ $x \in A$, 使得 $x^2 - 2x - 3 > 0$ "	的否定为(
	A. $\exists x \in A$,使得 $x^2 - 2x - 3 < 0$	В.	$\exists x \in A$,使得 x^2 -	$-2x-3 \le 0$	
	C. $\forall x \in A$,使得 $x^2 - 2x - 3 > 0$				
4.	已知在等比数列 $\{a_n\}$ 中, $a_1=1$,	$a_5 = 9$, $$			
	A. ±5 B. 5 C.	±3	D. 3		
5.	曲线 $y = e^x$ 在点 $A(0,1)$ 处的切线	斜率为()		
	A.1 B.2 C. <i>e</i>	D. 1			
6.	"直线与双曲线有唯一的公共点"	e	5双曲线相切"的(·)	
•	A. 充分不必要条件 B. 必要				
	C. 充要条件 D. 既 ⁷				
7.	已知等差数列 $\{a_n\}$ 的前 n 项和为)	
	A. $S_{12} = 0$ B. 公差 $d > 1$	> 0	C. $a_6 = 0$	D. $S_4 > S_5$	

8. 设 P 为 双 曲 线 $x^2 - \frac{y^2}{12} = 1$ 上 的 - 点 , F_1, F_2 是 该 双 曲 线 的 两 个 焦 点 , 若

$ PF_1 : PF_2 =3:2$	2 ,则 ΔPF_1F_2 的面积	(为 ()		
A. $6\sqrt{3}$	B. 12	C. $12\sqrt{3}$	D. 24	
9. 实数 <i>x、y</i> ,不	等式组 $ \begin{cases} x \ge 1 \perp y \le x \\ y \ge kx - 3k \end{cases} $	2 所确定的可行域 +2	内,若目标函数 z = y	<i>x</i> 仅
在点(3,2)取得最小	小值,则实数 k 的取值	直范围是()		
A. (0, 2)	B. (1, 2)	C. [0, 1]	D. (0, 1)	
10. 对于使 $f(x)$ ≤	M 恒成立的所有常	数 M 中,我们把 M 的	的最小值叫做 $f(x)$ 的上确	自界,
若 $a>0,b>0$,且 a	$a+b=1$, $\mathbb{N}-\frac{1}{2a}$	$\frac{2}{b}$ 的上确界为()		
A. $\frac{9}{2}$	B. $-\frac{9}{2}$	C. $\frac{1}{4}$	D4	
			偶 函 数 , 当 <i>x</i> < 0 时	ţ,
f'(x)g(x) + f(x)g(x)	$g'(x) < 0 \qquad \coprod f(-2)$	0 = 0,则不等式 $f(x)$	g(x) < 0 的解集为()
A. $(-2,0)$	` '	В. (−2,0) ∪		
C. $(-\infty,-2)$	\cup $(2,+\infty)$	D. $(-\infty,-2)$	$\cup (0,2)$	
12. 设经过定点 <i>M</i>	I(a,0) 的直线与抛物	线 $y^2 = 2px$ 相交于 h	P,Q 两点, $\frac{1}{ PM ^2} + \frac{1}{ QM }$	$\frac{1}{ I ^2}$
为常数,则 a	的值为()			
A. $\frac{p}{2}$	B. 2 p C. p	D. –2 <i>p</i>		
二、填空题(本大	题共 4 小题,每小题	[5分,共20分)		
13. 若关于 x 的不等	E式 $\frac{x-a}{x-1} > 0$ 的解集	为(-∞,-4)∪(1,+∞)	,则实数 <i>a</i> =	
14. 函数 $y = x^3$ —	-3x+9的极小值是_			
15.已知等差数列{	a_n }中, S_n 是它的前 n	· 项和,若 S ₁₆ >0,且	$S_{17}<0$,则当 S_n 最大时,	n 的
值为				

16. 过抛物线 $x^2=2py(p>0)$ 的焦点 F 作倾斜角为 30°的直线,与抛物线分别交于 $A \times B$ 两

点(点
$$A$$
 在 y 轴左侧),则 $\frac{|FB|}{|AF|} =$ _____

三、解答题(本大题共 6 小题,满分 70 分.解答须写出文字说明、证明过程和演算步骤) 17. (本小题满分 10 分)

已知 $p:-1 \le \frac{x-1}{3} \le 3$, $q:x^2-2x+1-m^2 \le 0 (m>0)$, 若 $p \neq q$ 的必要不充分条件, 求实数 m 的取值范围.

18. (本小题满分 12 分)

如图,一矩形铁皮的长为 8cm,宽为 5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?

19. (本小题满分 12 分)

已知数列 $\{a_n\}$ 的首项为 a_1 =3,通项 a_n 与前n项和 S_n 之间满足 $2a_n=S_n\cdot S_{n-1}$ $(n\geq 2)$

(1)求证:
$$\left\{\frac{1}{S_n}\right\}$$
 是等差数列, 并求公差;

(2)求数列 $\{a_n\}$ 的通项公式.

20. (本小题满分 12 分)

椭圆 $ax^2 + by^2 = 1$ 与直线 x + y - 1 = 0 相交于 A、B 两点,若 $|AB| = 2\sqrt{2}$,线段 AB 的

中点为 C, O 为坐标原点,且 OC 的斜率为 $\frac{\sqrt{2}}{2}$,求椭圆方程.

21. (本小题满分 12 分)

已知函数 $f(x) = ax^3 + bx \quad (x \in R)$,

- (1) 若函数 f(x) 的图象在点 x = 3 处的切线与直线 24x y + 1 = 0 平行, 函数 f(x) 在 x = 1 处取得极值,求函数 f(x) 的解析式,并确定函数的单调递减区间;
- (2) 若 a = 1, 且函数 f(x) 在 [-1,1] 上是减函数, 求 b 的取值范围.

22. (本小题满分12分)

已知点G 是 ΔABC 的重心,A(0,-2),B(0,2),在x 轴上有一点M 满足: $|\overrightarrow{MA}| = |\overrightarrow{MC}|$, $\overrightarrow{GM} = \lambda \overrightarrow{AB} (\lambda \in R)$.

- (I) 求点C的轨迹方程;
- (II)直线 l 与点 C 的轨迹交于 P 、 Q 两点,弦 PQ 的中点坐标为 $(-\frac{3}{4},\frac{1}{4})$,求弦长 |PQ|.