
2006-2007 学年度下学期期中阶段测试

数学试卷 高二理科

考试时间: 120 分钟 试题满分: 150 分

	第1巻	60 选择题共 60	分)	
	大题共 12 小题,每小 一项是符合题目要求的		分。在每小题给出的I	四个选项中,只
1. 将 $(a_1 + a_2 + a_3)$	$(b_1 + b_2)(c_1 + c_2 + c_3)$	$c_3 + c_4$)展开后	的项数是	
A. 24	В. 12	C. 11	D. 9	
2. 算式 (x-m)(x	(-m-1)(x-m-2)	…(x-9) (其中	$x, m \in N_+, \perp x > 1$	> <i>m</i>) 用排列数
表示是				
A. A_{x-m}^{x-19}	B. A_{x-m}^{9-m}	C. A_{x-m}^{10-m}	D. A_{x-m}^{8-m}	
3. 组合数方程50	$C_n^5 + C_n^4 = C_n^3 \text{ in } \mathbb{R}$			
A. 6	B.5或1	C. 5	D.6或1	
4. $\pm (\sqrt{3}x + \sqrt[3]{2})$)100 展开所得的关于;	c 的多项式中, 5	系数为有理数的项共和	有
A. 50 项	B. 17 项	C. 16 项	D. 15 项	
5. 设 $\xi \sim B(n, p)$	$)$,且随机变量 ξ 的期	用望与方差分別だ	为 15 和 $\frac{45}{4}$,则 n 和。	p 的值分别为
A. 50, $\frac{1}{4}$	B. 50, $\frac{3}{4}$	C. 60,	$\frac{1}{4}$ D. 60,	$\frac{3}{4}$
6. 抛掷骰子一次	,事件 A 表示"出现的	勺点数为奇数",	事件 B 表示"出现的	点数不超过 3",
则 $P(A+B)$ 的	值为			
A. 1	B. $\frac{2}{3}$	C. $\frac{3}{4}$	D. $\frac{1}{2}$	
7. 在 $(x^2 + 3x +$	2) ⁵ 的展开式中,含 <i>x</i>	c 的项的系数为		
8. 街道旁规划树	B. 240 立 6 块广告牌,广告 g绿色的配色方案的科	牌的底色选红、	D. 480 绿两种颜色的一种,	且相邻两块广
	В. 13		D. 24	

9. 在单位圆的圆周上随机取三个点 $A \setminus B \setminus C$,则取出的三点组成锐角 $\triangle ABC$ 的概率为

三、解答题:本大题共6小题,共74分。解答应写出文字说明或演算步骤

17. (本小题满分 12 分)

解不等式: $A_8^x < 6 \cdot A_8^{x-2}$ 。

18. (本小题满分 12 分) 甲、乙两名射手在一次射击中的得分为两个独立的随机变量 ξ 和

 η , 且 ξ 、 η 的分布列为

Š	1	2	3	η	1	.2	3
P	a	0.1	0.6	P	0.3	Ъ	0.3

求: (1) a 和 b 的值:

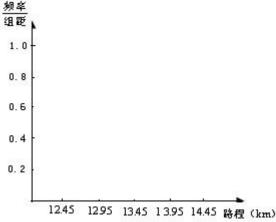
(2) 分别计算 ξ 、 η 的期望与方差,并以此分析甲、乙的技术状况。

19. (本小题满分 12 分)

已知二项式 $(1+px)^n$ (p为大于0的常数)展开式中各项的二项式系数之和为1024,

按x的升幂排列的前三项的系数之和为201。

- (1) 求常数n及p的值;
- (2) 求该二项式的展开式中所有x的奇数次方项的系数之和:
- (3) 求该展开式中系数最大的项。

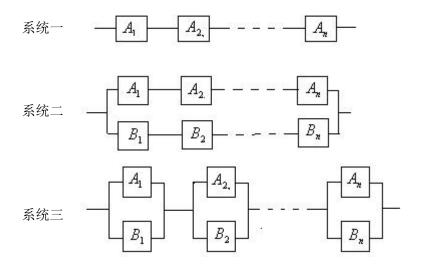

20. (本小题满分 12 分)

有一同型号的汽车 100 辆,为了了解这种汽车每耗油 1L 所行路程的情况,现从中随机抽出 10 辆在同一条件下进行耗油 1L 所行路程试验,

得到如下样本数据(单位: km): 13.7, 12.7, 14.4, 13.8, 13.3, 12.5, 13.5, 13.6, 13.1, 13.4, 并分组如下:

71 74 ·== 711 1 ·					
分组	频数	频率			
[12.45, 12.95)					
[12.95, 13.45)					
[13.45, 13.95)					
[13. 95, 14. 45)					
合计	10	1. 0			

- (1) 完成上面频率分布表;
- (2) 根据上表在给定坐标系中画出频率分布直方 图,并根据样本估计总体数据落在[12.95, 13.95]中的概率;
- (3) 根据样本,对总体的平均值进行估计。


高二数学试卷 第 3 页 共 4 页

21. (本小题满分 12 分)

是否存在等差数列
$$\{a_n\}$$
,使等式 $C_n^0+\frac{C_n^1}{a_1}+\frac{C_n^2}{a_2}+\cdots+\frac{C_n^{n-1}}{a_{n-1}}+\frac{C_n^n}{a_n}=\frac{2^{n+1}-1}{n+1}$ 对一切 $n\in N_+$ 都成立?证明你的结论。

22. (本小题满分14分)

通常称元件能正常工作的概率为元件的可靠性;称由元件组成的系统能正常工作的概率为系统的可靠性。假设构成系统的每个元件的可靠性均为r(0 < r < 1),且各元件能否正常工作是彼此独立的。今有如图所示的三个系统(其中 $A_i, B_i, i = 1, 2, 3, \cdots, n$ 均为元件)试分别求出它们的可靠性 $P_1 \times P_2 \times P_3$,并比较它们的大小。

高二数学试卷 第 4 页 共 4 页