2012-2013 学年度下学期期末考试高二年级数学科 (理科)试卷

一、选择题: 本大题共 12 小题,每小题 5 分,只有一个选项是符合题目要求的.
1、已知随机变量 ξ 服从正态分布 $N(\mu,4)$,且 $P(\xi < -3) + P(\xi \le 1) = 1$,则 $\mu = ($) A. -2 B. 2 C. 1 D. -1
2、关于复数 $z = (1+i)^2$,下列说法中正确的是()
A. 在复平面内复数 z 对应的点在第一象限 B. 复数 z 的共轭复数 $\overline{z}=1-i$ C. 复数 z 为纯虚数 D. 设 a,b 分别为复数 z 的实部和虚部,则 $ab=1$
3 、已知两个随机变量 X,Y 分别服从二项分布和超几何分布,即 $X \sim B(6,\frac{1}{3})$,
$Y \sim H(5,10,30)$ ($n = 5, M = 10, N = 30$) 则 $E(X) + E(Y)$ 等于 ()
A. 3 B. $\frac{11}{3}$ C. $\frac{7}{3}$ D. 17
4、高三(1)班的甲、乙两个数学兴趣小组中,甲组有 5 名同学,乙组有 7 名同学,现从 12 名学生中随机选出 3 人参加数学竞赛,已知在甲组已有一名同学确定参加的条件下,则另两名同学恰好甲、乙两个组各一名的概率为() A. $\frac{28}{55}$ B. $\frac{14}{33}$ C. $\frac{35}{66}$ D. $\frac{2}{5}$
5、设 n 为正整数且 $n \ge 3$,用数学归纳法证明不等式 $n^2 + 45 > 14n$ 成立时,其初始
值最小应取 ()
A. 3 B. 4 C. 10 D. 11
6、某珠宝店失窃,甲、乙、丙、丁 4 疑犯被审,4 人口供如下:甲:"我没有偷"; 乙:"丁是窃贼"; 丙:"乙是窃贼"; 丁:"我没有偷"; 已知甲、乙、丙、丁 4 人中有 且只有一人说了真话,请你推理得出窃贼一定是() A. 甲 B. 乙 C. 丙 D. 丁
7、已知 a,b 为常数, $b>a>0$,且 $4a,\sqrt{3},b$ 成等比数列, $(ax+b)^6$ 的展开式中所
有项的系数和为 64 ,则 a 等于 $($ $)$
A. $-\frac{1}{2}$ B. $\frac{1}{2}$ C. -1 D. $\frac{3}{2}$
8 从 01 2 3 4 5 六个 数字中任取两个

高二年级数学(理科)试卷共6页第1页

9、一个篮球游戏,参赛者要完成连续投篮6次,并规定6次投篮投中4次或4次以上

的个数为 () A. 72 B. 84 C. 144 D. 96

且最后 2 次都投进者获奖,参赛者甲每次投篮投中的概率都是 $\frac{2}{3}$,则甲获奖的概率为

A.
$$\frac{64}{3^5}$$

() A.
$$\frac{64}{3^5}$$
 B. $\frac{496}{3^6}$ C. $\frac{32}{81}$ D. $\frac{256}{3^6}$

C.
$$\frac{32}{81}$$

D.
$$\frac{256}{3^6}$$

10、用3个2、2个a、1个b、1个c按前后顺序排列组成一个七位号码,要求: 2个a不 能相邻地排在一起,且b必须排在c的前面(可以不相邻),则符合条件的不同的号 码个数为(

11、设点
$$M$$
 在曲线 $y = 5^x$ 上,点 N 在曲线 $y = 1 - \frac{1}{x}(x > 0)$ 上,

则|MN|的最小值为(

A.
$$2\sqrt{2}$$

B.
$$4\sqrt{2}$$

A.
$$2\sqrt{2}$$
 B. $4\sqrt{2}$ C. $\frac{\sqrt{2}}{2}$ D. $\sqrt{2}$

D.
$$\sqrt{2}$$

12、如图,将平面直角坐标系的格点(横、纵坐标均为 整数的点)按如下规则标上数字标签:原点处标0,

点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)

处标 4, 点 (-1,0) 标 5, 点 (-1,1) 处标 6, 点 (0,1) 处标 7,

以此类推,经归纳可知标注2013的格点的坐标为(

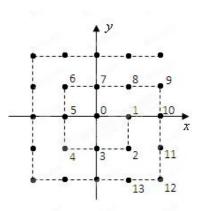
C.
$$(23,23)$$

二、填空题: 本大题共4小题,每小题5分.

13.
$$\int_{0}^{2} (1 - \frac{2}{x+1}) dx = ____;$$

14、
$$(9x - \frac{1}{3\sqrt{x}})^{18}$$
展开式的常数项是第______项;

15、已知函数
$$f(x) = x^4 + \frac{1}{3}ax^3 + \frac{1}{16}ax^2 + b$$
, 其中 $a, b \in R$, 若 $x = 0$ 是函数 $f(x)$ 唯一的极值点, 则实数 a 的取值范围是



16、设曲线 $y = (ax-1)e^x$ (其中 e 是自然对数的底数)在点 $A(x_0, y_1)$ 处的切线为 l_1 ,曲线 $y = (1-x)e^{-x}$ (其中 e 是自然对数的底数)在点 $B(x_0, y_2)$ 处的切线为 l_2 ,若存在 $x_0 \in (0,1)$ 使得 $l_1 \perp l_2$,则实数 a 的取值范围是______.

三、解答题:本大题满分 70 分,解答应写出文字说明.证明过程或演算步骤. 17、(本小题满分 12 分)

某高中为了研究学情,从高三(4)班抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均成绩(其中每次考试数学满分150分,物理满分100分,平均成绩采取4舍5入取整数):

777 1772 H 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
学生序号	1	2	3	4	5	6	7	8	9	10
数学平均成绩	142	138	135	131	125	120	127	124	130	133
物理平均成绩	96	94	92	92	90	75	91	72	72	88
学生序号	11	12	13	14	15	16	17	18	19	20
数学平均成绩	115	125	121	121	120	108	107	110	102	113
物理平均成绩	78	83	69	75	77	64	71	69	67	67

学校规定:数学平均成绩在130分以上(包括130)为优秀,在130分以下为不优秀;物理平均成绩在90分以上(包括90)为优秀,在90分以下为不优秀;

- (1)学校决定在数学和物理两科成绩都优秀的学生中随机选出 2 名参加某大学的自主招生考试, 求序号 1 的学生被选出的概率;
- (2)根据这次抽查数据,完成下面 2×2 列联表,根据联表数据你有多大把握认为物理成绩与数学成绩有关?

	数学优秀	数学不优秀	合计
物理优秀			
物理不优秀			
合计			

$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}, \quad \sharp + n = a+b+c+d$$

18、(本小题满分12分)

已知二项展开式
$$(2-x)^n = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$
 ($n \in N \perp n \geq 2$)

- (3) 在展开式中相邻 $k(k \ge 2, k \in \mathbb{Z})$ 项的二项式系数之比为1:2:3:...:k, 求k;

19、(本小题满分12分)

环境保护越来越成为民众关注的热点问题,空气质量指数(AQI)是衡量空气好坏的重要指标。下面表 1 是 S 市某气象观测点记录的 4 天里,AQI 指数 M 与当天的空气水平可见度 y (千米)的情况,表 2 是该气象观测点记录的该市本月 1 日到 30 日 AQI 指数频数统计结果

表 1: AQI 指数 M 与当天的空气水平可见度 v (千米)情况

AQI 指数 M	900	700	300	100
空气可见度 y (千米)	0.5	3.5	6.5	9.5

表 2: 某月 1 日到 30 日 AQI 指数频数统计

AQI 指数	[0, 200]	(200, 400]	(400, 600]	(600, 800]	(800, 1000]
频数	3	6	12	6	3

- (1) 设变量 $x = \frac{M}{100}$, 根据表 1 的数据, 求出 \hat{y} 关于 x 的线性回归方程;
- (2)某小区到社区附近的学校参加晨练的人数受空气质量影响很大,假设每天空气质量的情况不受前一天影响,经小区物业值班人员老王值班的几天里观察统计: AQI 指数不高于 200 时,该小区平均每天参加晨练的人数为 60 人,AQI 指数在 200 至 400 时,该小区平均每天参加晨练的人数为 40 人,AQI 指数大于 400 时,该小区平均每天参加晨练的人数为 20 人,若将频率看作概率,求该小区该月平均每天参加晨练的人数的分布列及数学期望.

(用最小二乘法求线性回归方程系数公式
$$\hat{b} = \frac{\displaystyle\sum_{i=1}^n x_i y_i - n\overline{x} \cdot \overline{y}}{\displaystyle\sum_{i=1}^n x_i^2 - n\overline{x}^2}$$
, $\hat{a} = \overline{y} - \hat{b}\overline{x}$).

20、(本小题满分12分)

已知数列 $\{a_n\}$ 前 n 项和为 S_n ,且满足 $a_{n+1}=S_n-n+3$ $(n\in N^*)$, $a_2=5$

(1) 证明数列 $\{a_n-1\}$ 是等比数列;

(2)令
$$f(x) = a_1 x + a_2 x^2 + \cdots + a_n x^n$$
,记函数 $f(x)$ 在点 $x = 1$ 处的导数为 $f'(1)$,试比较 $2f'(1)$ 与 $9n^2 - 3n$ 的大小,并给出证明;

21、(本小题满分 12 分)已知函数 $f(x) = m \ln x + nx(x > 0), g(x) = xe^x - 1(x > 0)$ 且函数 f(x) 在点 P(2, f(2)) 处的切线方程为 $y = \frac{3}{2}x + \ln 2 - 1$.

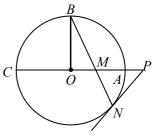
- (1) 求函数 f(x) 的解析式;
- (2) 设点 M(1, f(1)), $Q(x_0, f(x_0))$, 当 $x_0 > 1$ 时,直线 MQ 的斜率恒小于a, 试求实数a 的取值范围;
- (3) 证明: $g(x) f(x) \ge 0$.

请考生在22、23、24 三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B铅笔在答题卡上把所选题目对应题号涂黑.

22. (本小题满分 10 分) 选修 4-1: 几何证明选讲.

如图, \odot O 的半径 OB 垂直于直径 AC , M 为 AO 上一点,BM 的延长线交 \odot O 于点 N , 过 N 点的切线交 CA 的延长线于点 P .

- (1) 求证: $PM^2 = PA \cdot PC$;
- (2) 若 \odot O 的半径为 $2\sqrt{3}$, $OA = \sqrt{3}OM$, 求 MN 长.



(第 22 图)

23. (本小题满分10分)选修4-4: 坐标系与参数方程

已知极坐标系的极点为直角坐标系 xoy 的原点,极轴为 x 轴的正半轴,两种坐标系中的长度单位相同,已知曲线 C 的极坐标方程为: $\rho = \sin \theta + \cos \theta$.

(1) 求C的直角坐标方程;

(2) 直线
$$l$$
:
$$\begin{cases} x = \frac{\sqrt{3}}{2}t \\ y = \frac{1}{2} + \frac{1}{2}t \end{cases}$$
 (t 为参数) 与曲线 C 交于 A , B 两点,与 y 轴交于 P ,
$$\bar{x} \frac{1}{|PA|} + \frac{1}{|PB|}$$
 的值.

24. (本小题满分 10 分) 选修 4-5: 不等式选讲

设 f(x) = |x-3| + |x-4|.

- (1) 解不等式 $f(x) \le 2$;
- (2) 若对任意实数 $x \in [6,8]$, $f(x) \le ax + 1$ 恒成立, 求实数 a 的取值范围.